Jordan nilpotency in Group Rings

César Polcino Milies

Universidade de São Paulo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Notation

Let A be an associative ring. The Lie bracket of two elements $a, b \in A$ is given by:

$$[a,b] = ab - ba.$$

With usual addition and the Lie bracket as a multiplication, *A* becomes a **Lie Algebra** in the sense that it satisfies the **Jacobi Identity**:

$$[[x, y], z] + [[z, x], y] + [[y, z], x] = 0 \quad \forall x, y, z \in A.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notation

Let A be an associative ring. The Lie bracket of two elements $a, b \in A$ is given by:

$$[a,b] = ab - ba.$$

With usual addition and the Lie bracket as a multiplication, *A* becomes a **Lie Algebra** in the sense that it satisfies the **Jacobi Identity**:

$$[[x, y], z] + [[z, x], y] + [[y, z], x] = 0 \quad \forall x, y, z \in A.$$

The ring is said to be **Lie nilpotent**, of index *n*, if $[\dots [[x_1, x_2], x_3], \dots, x_n] = 0$ for all choices of elements $x_1, x_2, \dots, x_n \in A$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Let A be an associative ring. The **circle operation** of two elements $a, b \in A$ is given by:

 $a \circ b = ab + ba$.

With usual addition and this operation as a multiplication, *A* becomes a **Jordan Algebra** in the sense that it satisfies the **Jordan Identity**:

$$((x \circ x) \circ y) \circ x = (x \circ x) \circ (y \circ x) \quad \forall x, y, z \in A.$$

Let A be an associative ring. The **circle operation** of two elements $a, b \in A$ is given by:

 $a \circ b = ab + ba$.

With usual addition and this operation as a multiplication, *A* becomes a **Jordan Algebra** in the sense that it satisfies the **Jordan Identity**:

$$((x \circ x) \circ y) \circ x = (x \circ x) \circ (y \circ x) \quad \forall x, y, z \in A.$$

The ring is said to be **Jordan nilpotent**, of index *n*, if $(\ldots ((x_1 \circ x_2) \circ x_3) \circ \ldots \circ x_n) = 0$ for all choices of elements $x_1, x_2, \ldots, x_n \in A$.

Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with $char(K) = p \ge 0$ and G a group. The group algebra KG is Lie nilpotent if and only if G is nilpotent and p-abelian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with $char(K) = p \ge 0$ and G a group. The group algebra KG is Lie nilpotent if and only if G is nilpotent and p-abelian.

Recall: G is p-abelian if G' is a finite p group (when p > 0) or G is an abelian group (when p=0).

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to RG:

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to RG:

$$\alpha = \sum_{g \in G} \alpha_g g \quad \mapsto \quad \alpha^* = \sum_{g \in G} \alpha_g g^{-1}.$$

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to RG:

$$\alpha = \sum_{g \in G} \alpha_g g \quad \mapsto \quad \alpha^* = \sum_{g \in G} \alpha_g g^{-1}$$

Definition

Similarly, a **Group Involution** in a group ring is defined extending linearly an involution of the given group $g \mapsto g^*$ to RG:

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to RG:

$$\alpha = \sum_{g \in G} \alpha_g g \quad \mapsto \quad \alpha^* = \sum_{g \in G} \alpha_g g^{-1}.$$

Definition

Similarly, a **Group Involution** in a group ring is defined extending linearly an involution of the given group $g \mapsto g^*$ to RG:

$$\alpha = \sum_{g \in G} \alpha_g g \quad \mapsto \quad \alpha^* = \sum_{g \in G} \alpha_g g^*.$$

Let * be an involution on a group ring RG. We consider:

$$RG^{+} = \{ \alpha \in RG \mid \alpha^{*} = \alpha \}$$

$$RG^{-} = \{ \alpha \in RG \mid \alpha^{*} = -\alpha \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the sets of **symmetric** and **skew-symmetric** elements of *RG*, respectively.

Let * be an involution on a group ring RG. We consider:

$$RG^{+} = \{ \alpha \in RG \mid \alpha^{*} = \alpha \}$$

$$RG^{-} = \{ \alpha \in RG \mid \alpha^{*} = -\alpha \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

the sets of **symmetric** and **skew-symmetric** elements of *RG*, respectively.

Notice:

• *RG⁻* is a **Lie subalgebra** of *RG*.

Let * be an involution on a group ring RG. We consider:

$$RG^{+} = \{ \alpha \in RG \mid \alpha^{*} = \alpha \}$$

$$RG^{-} = \{ \alpha \in RG \mid \alpha^{*} = -\alpha \}$$

the sets of **symmetric** and **skew-symmetric** elements of *RG*, respectively.

Notice:

- RG^- is a Lie subalgebra of RG.
- RG^+ is a **Jordan subalgebra** of RG.

Theorem (Jespers and Ruiz, 2006)

Let φ be an involution of a non-abelian group G and let R be a commutative ring os characteristic different from 2. Then, the following are equivalent:

- **1** RG^+ is commutative.
- \bigcirc G is an SLC group with cannonical involution.

Theorem (Broche, Jespers, P.M. and Ruiz 2009)

Let *R* be a commutative ring. Suppose *G* is a non-abelian group and φ is an involution on *G*. Then, $(RG)^-$ is commutative if and only if one of the following conditions holds:

- $K = \langle g \in G | g \notin G^+ \rangle$ is abelian (and thus $G = K \cup Kx$, where $x \in G^+$, and $\varphi(k) = xkx^{-1}$ for all $k \in K$) and $R_2^2 = \{0\}.$
- 2 $R_2 = \{0\}$ and G contains an abelian subgroup of index 2 that is contained in G^+ .
- char(R) = 4, |G'| = 2, $G/G' = (G/G')^+$, $g^2 \in G^+$ for all $g \in G$, and G^+ is commutative in case $R_2^2 \neq \{0\}$.
- char(R) = 3, |G'| = 3, $G/G' = (G/G')^+$ and $g^3 \in G^+$ for all $g \in G$.

Theorem (Giambruno, PM and Sehgal 2013)

Let *F* be a field, $char(F) \neq 2$, and let G be a group with no 2-elements. Let * be an involution on *FG* induced by an involution of *G* and suppose that no dihedral group is involved in *G*. Then the Lie algebra *FG*⁻ is nilpotent if and only if either *FG* is Lie nilpotent or char(F) = p > 2 and the following conditions hold.

- The set P of p-elements in G is a subgroup,
- 2 * is trivial on G/P ,
- there exist normal *-invariant subgroups A and B, B ⊂ A such that B is a finite central p-subgroup of G, A/B is central in G/B and both G/A and {a ∈ A | aa* ∈ B} are finite. 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Roughly speaking, a loop is a group which is not necessarily associative; more precisely, we have the following.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Roughly speaking, a loop is a group which is not necessarily associative; more precisely, we have the following.

Definition

A **loop** is a set *L* together with a (closed) binary operation $(a, b) \mapsto ab$ for which there is a two-sided identity element 1 and such that the right and left translation maps

$$R_x$$
: $a \mapsto ax$ and L_x : $a \mapsto xa$

are bijections for all $x \in L$. This requirement implies that, for any $a, b \in L$, the equations ax = b and ya = b have unique solutions.

The **loop algebra** of L over an associative and commutative ring with unity R was introduced in 1944 by R.H. Bruck as a means to obtain a family of examples of nonassociative algebras. It is defined in a way similar to that of a group algebra; i.e., as the free R-module with basis L, with a multiplication induced distributively from the operation in L.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The **loop algebra** of L over an associative and commutative ring with unity R was introduced in 1944 by R.H. Bruck as a means to obtain a family of examples of nonassociative algebras. It is defined in a way similar to that of a group algebra; i.e., as the free R-module with basis L, with a multiplication induced distributively from the operation in L.

Definition

A ring R is alternative if

x(xy) = (xx)y and (xy)y = x(yy) for all $x, y \in R$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition

An **RA** (ring alternative) loop is a loop whose loop ring RL over some ring R with no 2-torsion is alternative, but not associative.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

An **RA** (ring alternative) loop is a loop whose loop ring RL over some ring R with no 2-torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if and only if it has the following properties:

(i) If three elements associate in some order then they associate in all orders and

(ii) If $g, h, k \in L$ do not associate, then gh.k = g.kh = h.gk.

Definition

An **RA** (ring alternative) loop is a loop whose loop ring RL over some ring R with no 2-torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if and only if it has the following properties:

(i) If three elements associate in some order then they associate in all orders and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(ii) If $g, h, k \in L$ do not associate, then gh.k = g.kh = h.gk.

It follows that if RL is alternative over one ring R as in the definition, then it is also alternative over *all* such rings.

A group *G*, with center $\mathcal{Z}(G)$, is called an **LC group** (or, that it has **limited commutativity**) if it is not commutative and for any pair of elements $x, y \in G$ we have that xy = yx if and only if either $x \in \mathcal{Z}(G)$ or $y \in \mathcal{Z}(G)$ or $xy \in \mathcal{Z}(G)$.

Theorem

A loop L is RA if and only if it is not commutative and, for any two elements a and b of L which do not commute, the subloop of L generated by its centre together with a and b is a group G such that

- (i) for any $u \notin G$, $L = G \cup Gu$ is the disjoint union of G and the coset Gu;
- (ii) G is an LC group.
- (iii) G has a unique nonidentity commutator s, which is necessarily central and of order 2;

(iv) the map

$$g\mapsto g^*=\left\{egin{array}{cc}g& ext{if g is central}\sg& ext{otherwise}\end{array}
ight.$$

is an involution of G (i.e., an antiautomorphism of order 2); (v) multiplication in L is defined by

$$g(hu) = (hg)u$$

$$(gu)h = gh^*u$$

$$(gu)(hu) = g_0h^*g$$

where $g, h \in G$ and $g_0 = u^2$ is a central element of G.

A group G is called an **SLC groups** if it is LC and contains a unique non-trivial commutator s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A group G is called an **SLC groups** if it is LC and contains a unique non-trivial commutator s.

Proposition

A group G, with center $\mathcal{Z}(G)$, is an SLC group if and only if $G/\mathcal{Z}(G) \cong C_2 \times C_2$.

Theorem (Leal - PM, 1993)

A group *G* is SLC if and only if *G* can be written in the form $G = D \times A$, where *A* is abelian and *D* is an indecomposable 2-group generated by its centre and two elements *x* and *y* which satisfy

(i) $\mathcal{Z}(D) = C_{2^{m_1}} \times C_{2^{m_2}} \times C_{2^{m_3}}$, where $C_{2^{m_i}}$ is cyclic of order 2^{m_i} for $i = 1, 2, 3, m_1 \ge 1$ and $m_2, m_3 \ge 0$; (ii) $(x, y) \in C_{2^{m_1}}$; (iii) $x^2 \in C_{2^{m_1}} \times C_{2^{m_2}}$ and $y^2 \in C_{2^{m_1}} \times C_{2^{m_2}} \times C_{2^{m_3}}$.

Theorem (Jespers, Leal and PM, 1995)

Let G be a finite group. Then $G/CZ(G) \cong C_2 \times C_2$ if and only if G can be written in the form $G = D \times A$, where A is abelian and $D = \langle Z(D), x, y \rangle$ is of one of the following five types of indecomposable 2-groups:

Туре	$\mathcal{Z}(D)$	D
D_1	$\langle t_1 \rangle$	$\langle x, y, t_1 \mid (x, y) = t_1^{2^{m_1}-1}, x^2 = y^2 = t_1^{2^{m_1}} \rangle$
D_2	$\langle t_1 \rangle$	$\langle x, y, t_1 \mid (x, y) = t_1^{2^{m_1}-1}, x^2 = y^2 = t_1, t^{2^{m_1}} = 1 \rangle$
D ₃	$\langle t_1 angle imes \langle t_2 angle$	$\langle x, y, t_1, t_2 \mid (x, y) = t_1^{2^{m_1}-1}, x^2 = t_1^{2^{m_1}} = t_2^{2^{m_2}} = 1, y^2 = t_2 \rangle$
D_4	$\langle t_1 angle imes \langle t_2 angle$	$\langle x, y, t_1, t_2 \mid (x, y) = t_1^{2^{m_1}-1}, x^2 = t_1, y^2 = t_2, t_1^{2^{m_1}} = t_2^{2^{m_2}} = 1 \rangle$
D_5	$\langle t_1 \rangle \times \langle t_2 \rangle \times \langle t_3 \rangle$	$\langle x, y, t_1, t_2, t_3 $
		$(x, y) = t_1^{-1}, x^2 = t_2, y^2 = t_3, t_1^{-1} = t_2^{-2}, z = t_3^{-3}, z = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Jordan Nilpotency

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Goodaire and PM)

Let RG denote the group ring of a group G over a commutative coefficient ring R with 1. Then RG is Jordan nilpotent of index 3 if and only if

- car(R) = 4 and G is abelian or,
- *car*(*R*) = 2 and either *G* is abelian or *G* has a unique nonidentity commutator.

Theorem (Goodaire and PM)

Suppose the characteristic of R is different from 2 and $\alpha \mapsto \alpha^*$ is an involution on the group ring RG that extends linearly an involution on G. Then the Jordan ring $(RG)^+$ of symmetric elements is Jordan nilpotent of index 3 if and only if car(R) = 4and G is abelian, or an SLC group with * canonical, or a nonabelian group with the following properties:

(a) any
$$g \in G$$
 with $g^* = g$ is central;

(b) G has an abelian subgroup A of index 2;

(c) there exists $c \notin A$ with the property that for any $a \in A$, either ac = ca or the commutator (a, c) is central of order 2;

(d)
$$a^* = (a, c)a$$
 for all $a \in A$.