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Notation

Let A be an associative ring. The Lie bracket of two elements
a,b € Ais given by:

[a, b] = ab — ba.

With usual addition and the Lie bracket as a multiplication, A
becomes a Lie Algebra in the sense that it satisfies the Jacobi
Identity:

[[x,v], 2] + [[z,x], y] + [y, 2], x] =0 Vx,y,z € A.
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Let A be an associative ring. The circle operation of two
elements a, b € A is given by:
aob=ab+ ba.

With usual addition and this operation as a multiplication, A
becomes a Jordan Algebra in the sense that it satisfies the
Jordan Identity:

((xox)oy)ox=(xox)o(yox) Vx,y,z € A.
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Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with char(K) = p > 0 and G a group. The group
algebra KG is Lie nilpotent if and only if G is nilpotent and
p-abelian.




Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with char(K) = p > 0 and G a group. The group
algebra KG is Lie nilpotent if and only if G is nilpotent and
p-abelian.

Recall: G is p-abelian if G’ is a finite p group (when p > 0) or G is
an abelian group (when p=0).
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Definition

The Classical Involution of a group ring is defined extending
linearly the map g — g~ ! to RG:
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Similarly, a Group Involution in a group ring is defined extending
linearly an involution of the given group g — g* to RG:
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The Classical Involution of a group ring is defined extending
linearly the map g — g~ ! to RG:

o= Zagg oot = Zagg_l.

geG geG

Definition
Similarly, a Group Involution in a group ring is defined extending
linearly an involution of the given group g — g* to RG:

a:Zagg — a*:Zagg*.

geG g€eG
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Definition

Let * be an involution on a group ring RG. We consider:
RGT = {a€RG|a*=a}
RG™ = {a€RG|a"=-a}

the sets of symmetric and skew-symmetric elements of RG,
respectively.
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Let * be an involution on a group ring RG. We consider:
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the sets of symmetric and skew-symmetric elements of RG,
respectively.

Notice:

@ RG™ is a Lie subalgebra of RG.
@ RG™ is a Jordan subalgebra of RG.




Theorem (Jespers and Ruiz, 2006)

Let ¢ be an involution of a non-abelian group G and let R be a
commutative ring os characteristic different from 2. Then, the
following are equivalent:

© RG™ is commutative.

@ G is an SLC group with cannonical involution.




Theorem (Broche, Jespers, P.M. and Ruiz 2009)
Let R be a commutative ring. Suppose G is a non-abelian group
and ¢ is an involution on G. Then, (RG)™ is commutative if and
only if one of the following conditions holds:
Q@ K={(ge G|g¢gGT)is abelian (and thus G = K U Kx,
where x € G*, and (k) = xkx! for all k € K) and
Rz = {0}.
@ R, = {0} and G contains an abelian subgroup of index 2 that
is contained in GT.
© char(R) =4, |G'| =2, G/G' = (G/G")T, g2 € Gt for all
g € G, and Gt is commutative in case R2 # {0}.
Q char(R) =3, |G| =3, G/G' = (G/G')" and g> € G* for all
g € G.




Theorem (Giambruno, PM and Sehgal 2013)

Let F be a field, char(F) # 2, and let G be a group with no
2-elements. Let * be an involution on FG induced by an involution
of G and suppose that no dihedral group is involved in G. Then
the Lie algebra FG~ is nilpotent if and only if either FG is Lie
nilpotent or char(F) = p > 2 and the following conditions hold.

@ The set P of p-elements in G is a subgroup,
@ *is trivial on G/P ,
© there exist normal *-invariant subgroups A and B, B C A such

that B is a finite central p-subgroup of G, A/B is central in
G/B and both G/A and {a € A | aa* € B} are finite. 2.




SLC groups
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Roughly speaking, a loop is a group which is not necessarily
associative; more precisely, we have the following.



Roughly speaking, a loop is a group which is not necessarily
associative; more precisely, we have the following.

Definition

A loop is a set L together with a (closed) binary operation

(a, b) — ab for which there is a two-sided identity element 1 and
such that the right and left translation maps

Ry:ar—ax and Ly: a+— xa

are bijections for all x € L. This requirement implies that, for any
a,b € L, the equations ax = b and ya = b have unique solutions.
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The loop algebra of L over an associative and commutative ring
with unity R was introduced in 1944 by R.H. Bruck as a means to
obtain a family of examples of nonassociative algebras.

It is defined in a way similar to that of a group algebra; i.e., as the
free R-module with basis L, with a multiplication induced
distributively from the operation in L.



The loop algebra of L over an associative and commutative ring
with unity R was introduced in 1944 by R.H. Bruck as a means to
obtain a family of examples of nonassociative algebras.

It is defined in a way similar to that of a group algebra; i.e., as the
free R-module with basis L, with a multiplication induced
distributively from the operation in L.

Definition

A ring R is alternative if

x(xy) = (xx)y and (xy)y = x(yy) for all x,y € R.
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An RA (ring alternative) loop is a loop whose loop ring RL over
some ring R with no 2-torsion is alternative, but not associative.
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An RA (ring alternative) loop is a loop whose loop ring RL over
some ring R with no 2-torsion is alternative, but not associative.

Theorem
Let L be a loop. Then L is a loop with an alternative loop ring if
and only if it has the following properties:
(i) If three elements associate in some order then they associate
in all orders and

(i) If g, h, k € L do not associate, then gh.k = g.kh = h.gk.




In 1983, E.G. Goodaire defined RA loops:

Definition

An RA (ring alternative) loop is a loop whose loop ring RL over
some ring R with no 2-torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if
and only if it has the following properties:

(i) If three elements associate in some order then they associate
in all orders and

(i) If g, h, k € L do not associate, then gh.k = g.kh = h.gk.

It follows that if RL is alternative over one ring R as in the
definition, then it is also alternative over all such rings.



Definition

A group G, with center Z(G), is called an LC group (or, that it
has limited commutativity) if it is not commutative and for any
pair of elements x,y € G we have that xy = yx if and only if
either x € Z(G) or y € Z(G) or xy € Z(G).




Theorem

A loop L is RA if and only if it is not commutative and, for any
two elements a and b of L which do not commute, the subloop of

L generated by its centre together with a and b is a group G such
that

(i) for any u ¢ G, L = G U Gu is the disjoint union of G and the
coset Gu;
(i) G is an LC group.
(iii) G has a unique nonidentity commutator s, which is necessarily
central and of order 2;
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(iv) the map

« | g if giscentral
g8 = { sg otherwise

is an involution of G (i.e., an antiautomorphism of order 2);

(v) multiplication in L is defined by

g(hu) = (hg)u
(gu)h
(gu)(hu) = goh'g

gh*u

2

where g, h € G and go = v is a central element of G.



Definition

A group G is called an SLC groups if it is LC and contains a
unique non-trivial commutator s.




Definition

A group G is called an SLC groups if it is LC and contains a
unique non-trivial commutator s.

Proposition

A group G, with center Z(G), is an SLC group if and only if
G/Z(G)= G x G.




Theorem (Leal - PM, 1993)
A group G is SLC if and only if G can be written in the form
G = D x A, where A is abelian and D is an indecomposable
2-group generated by its centre and two elements x and y which
satisfy
(i) Z(D) = Gm x Cymy x Coms, where Com; is cyclic of order 2™
fori=1,2,3, my > 1 and mp, m3 > 0;
(”) (va) € CZ’"I;
(III) X2 € Gom x Comy and _)/2 € Gom x Gmy x Coms.




Theorem (Jespers, Leal and PM, 1995)

Let G be a finite group. Then G/CZ(G) = G, x G if and only if
G can be written in the form G = D x A, where A is abelian and

D = (Z(D), x,y) is of one of the following five types of
indecomposable 2-groups:

Type Z(D) D

Dy (t) oyt [ Goy) =2 12 =y2 =8

D, (1) oyt | ay) =8 L2 =y =y, 2™ =)

Ds (1) x (&2) Goyata | o) =8 2= 8™ = 8™ =1,)% = )
Dy (t1) X (t2) (xyst1, b | (x,y) = l‘fml*l,x2 =t,=t, 2 =" =1)

Ds (t1) X (t2) x (t3) (x,y,t1,t2,13 |ml " . .
2m1 1 1 2 3
on) = 812 <y, = 1, 8™ = 8™ 2 2

=1)




Jordan Nilpotency

Q>



Theorem (Goodaire and PM)

Let RG denote the group ring of a group G over a commutative
coefficient ring R with 1. Then RG is Jordan nilpotent of index 3
if and only if

© car(R) =4 and G is abelian or,

@ car(R) = 2 and either G is abelian or G has a unique
nonidentity commutator.




Theorem (Goodaire and PM)

Suppose the characteristic of R is different from 2 and a +— a* is
an involution on the group ring RG that extends linearly an
involution on G. Then the Jordan ring (RG)™' of symmetric
elements is Jordan nilpotent of index 3 if and only if car(R) = 4
and G is abelian, or an SLC group with * canonical, or a
nonabelian group with the following properties:

(a) any g € G with g* = g is central;
(b) G has an abelian subgroup A of index 2;

(c) there exists ¢ ¢ A with the property that for any a € A, either
ac = ca or the commutator (a, ¢) is central of order 2;

(d) a* =(a,c)a for all a € A.




