Jordan nilpotency in Group Rings

César Polcino Milies

Universidade de São Paulo

Introduction

Notation

Let A be an associative ring. The Lie bracket of two elements $a, b \in A$ is given by:

$$
[a, b]=a b-b a .
$$

With usual addition and the Lie bracket as a multiplication, A becomes a Lie Algebra in the sense that it satisfies the Jacobi Identity:

$$
[[x, y], z]+[[z, x], y]+[[y, z], x]=0 \quad \forall x, y, z \in A
$$

Notation

Let A be an associative ring. The Lie bracket of two elements $a, b \in A$ is given by:

$$
[a, b]=a b-b a .
$$

With usual addition and the Lie bracket as a multiplication, A becomes a Lie Algebra in the sense that it satisfies the Jacobi Identity:

$$
[[x, y], z]+[[z, x], y]+[[y, z], x]=0 \quad \forall x, y, z \in A .
$$

The ring is said to be Lie nilpotent, of index n, if $\left[\ldots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{n}\right]=0$ for all choices of elements $x_{1}, x_{2}, \ldots, x_{n} \in A$.

Let A be an associative ring. The circle operation of two elements $a, b \in A$ is given by:

$$
a \circ b=a b+b a .
$$

With usual addition and this operation as a multiplication, A becomes a Jordan Algebra in the sense that it satisfies the Jordan Identity:

$$
((x \circ x) \circ y) \circ x=(x \circ x) \circ(y \circ x) \forall x, y, z \in A .
$$

Let A be an associative ring. The circle operation of two elements $a, b \in A$ is given by:

$$
a \circ b=a b+b a .
$$

With usual addition and this operation as a multiplication, A becomes a Jordan Algebra in the sense that it satisfies the Jordan Identity:

$$
((x \circ x) \circ y) \circ x=(x \circ x) \circ(y \circ x) \forall x, y, z \in A \text {. }
$$

The ring is said to be Jordan nilpotent, of index n, if $\left(\ldots\left(\left(x_{1} \circ x_{2}\right) \circ x_{3}\right) \circ \ldots \circ x_{n}\right)=0$ for all choices of elements $x_{1}, x_{2}, \ldots, x_{n} \in A$.

Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with $\operatorname{char}(K)=p \geq 0$ and G a group. The group algebra $K G$ is Lie nilpotent if and only if G is nilpotent and p-abelian.

Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with $\operatorname{char}(K)=p \geq 0$ and G a group. The group algebra $K G$ is Lie nilpotent if and only if G is nilpotent and p-abelian.

Recall: G is p-abelian if G^{\prime} is a finite p group (when $p>0$) or G is an abelian group (when $p=0$).

Definition
The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to $R G$:

Definition

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to $R G$:

$$
\alpha=\sum_{g \in G} \alpha_{g} g \quad \mapsto \quad \alpha^{*}=\sum_{g \in G} \alpha_{g} g^{-1}
$$

Definition

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to $R G$:

$$
\alpha=\sum_{g \in G} \alpha_{g} g \quad \mapsto \quad \alpha^{*}=\sum_{g \in G} \alpha_{g} g^{-1}
$$

Definition

Similarly, a Group Involution in a group ring is defined extending linearly an involution of the given group $g \mapsto g^{*}$ to $R G$:

Definition

The Classical Involution of a group ring is defined extending linearly the map $g \mapsto g^{-1}$ to $R G$:

$$
\alpha=\sum_{g \in G} \alpha_{g} g \quad \mapsto \quad \alpha^{*}=\sum_{g \in G} \alpha_{g} g^{-1}
$$

Definition

Similarly, a Group Involution in a group ring is defined extending linearly an involution of the given group $g \mapsto g^{*}$ to $R G$:

$$
\alpha=\sum_{g \in G} \alpha_{g} g \mapsto \alpha^{*}=\sum_{g \in G} \alpha_{g} g^{*}
$$

Definition

Let * be an involution on a group ring $R G$. We consider:

$$
\begin{aligned}
R G^{+} & =\left\{\alpha \in R G \mid \alpha^{*}=\alpha\right\} \\
R G^{-} & =\left\{\alpha \in R G \mid \alpha^{*}=-\alpha\right\}
\end{aligned}
$$

the sets of symmetric and skew-symmetric elements of $R G$, respectively.

Definition

Let * be an involution on a group ring $R G$. We consider:

$$
\begin{aligned}
R G^{+} & =\left\{\alpha \in R G \mid \alpha^{*}=\alpha\right\} \\
R G^{-} & =\left\{\alpha \in R G \mid \alpha^{*}=-\alpha\right\}
\end{aligned}
$$

the sets of symmetric and skew-symmetric elements of $R G$, respectively.

Notice:

- $R G^{-}$is a Lie subalgebra of $R G$.

Definition

Let * be an involution on a group ring $R G$. We consider:

$$
\begin{aligned}
R G^{+} & =\left\{\alpha \in R G \mid \alpha^{*}=\alpha\right\} \\
R G^{-} & =\left\{\alpha \in R G \mid \alpha^{*}=-\alpha\right\}
\end{aligned}
$$

the sets of symmetric and skew-symmetric elements of $R G$, respectively.

Notice:

- $R G^{-}$is a Lie subalgebra of $R G$.
- $R G^{+}$is a Jordan subalgebra of $R G$.

Theorem (Jespers and Ruiz, 2006)
Let φ be an involution of a non-abelian group G and let R be a commutative ring os characteristic different from 2. Then, the following are equivalent:
(1) $R G^{+}$is commutative.
(2) G is an SLC group with cannonical involution.

Theorem (Broche, Jespers, P.M. and Ruiz 2009)

Let R be a commutative ring. Suppose G is a non-abelian group and φ is an involution on G. Then, $(R G)^{-}$is commutative if and only if one of the following conditions holds:
(1) $K=\left\langle g \in G \mid g \notin G^{+}\right\rangle$is abelian (and thus $G=K \cup K x$, where $x \in G^{+}$, and $\varphi(k)=x k x^{-1}$ for all $k \in K$) and $R_{2}^{2}=\{0\}$.
(2) $R_{2}=\{0\}$ and G contains an abelian subgroup of index 2 that is contained in G^{+}.
(3) $\operatorname{char}(R)=4,\left|G^{\prime}\right|=2, G / G^{\prime}=\left(G / G^{\prime}\right)^{+}, g^{2} \in G^{+}$for all $g \in G$, and G^{+}is commutative in case $R_{2}^{2} \neq\{0\}$.
(3) $\operatorname{char}(R)=3,\left|G^{\prime}\right|=3, G / G^{\prime}=\left(G / G^{\prime}\right)^{+}$and $g^{3} \in G^{+}$for all $g \in G$.

Theorem (Giambruno, PM and Sehgal 2013)

Let F be a field, $\operatorname{char}(F) \neq 2$, and let G be a group with no 2-elements. Let * be an involution on $F G$ induced by an involution of G and suppose that no dihedral group is involved in G. Then the Lie algebra $F G^{-}$is nilpotent if and only if either $F G$ is Lie nilpotent or $\operatorname{char}(F)=p>2$ and the following conditions hold.
(1) The set P of p-elements in G is a subgroup,
(2) ${ }^{*}$ is trivial on G / P,
(3) there exist normal ${ }^{*}$-invariant subgroups A and $B, B \subset A$ such that B is a finite central p-subgroup of $G, A / B$ is central in G / B and both G / A and $\left\{a \in A \mid a a^{*} \in B\right\}$ are finite. 2.

SLC groups

Roughly speaking, a loop is a group which is not necessarily associative; more precisely, we have the following.

Roughly speaking, a loop is a group which is not necessarily associative; more precisely, we have the following.

Definition

A loop is a set L together with a (closed) binary operation $(a, b) \mapsto a b$ for which there is a two-sided identity element 1 and such that the right and left translation maps

$$
R_{x}: a \mapsto a x \quad \text { and } \quad L_{x}: a \mapsto x a
$$

are bijections for all $x \in L$. This requirement implies that, for any $a, b \in L$, the equations $a x=b$ and $y a=b$ have unique solutions.

The loop algebra of L over an associative and commutative ring with unity R was introduced in 1944 by R.H. Bruck as a means to obtain a family of examples of nonassociative algebras. It is defined in a way similar to that of a group algebra; i.e., as the free R-module with basis L, with a multiplication induced distributively from the operation in L.

The loop algebra of L over an associative and commutative ring with unity R was introduced in 1944 by R.H. Bruck as a means to obtain a family of examples of nonassociative algebras.
It is defined in a way similar to that of a group algebra; i.e., as the free R-module with basis L, with a multiplication induced distributively from the operation in L.

Definition

A ring R is alternative if

$$
x(x y)=(x x) y \text { and }(x y) y=x(y y) \text { for all } x, y \in R
$$

In 1983, E.G. Goodaire defined RA loops:

In 1983, E.G. Goodaire defined RA loops:
Definition
An RA (ring alternative) loop is a loop whose loop ring $R L$ over some ring R with no 2 -torsion is alternative, but not associative.

In 1983, E.G. Goodaire defined RA loops:

Definition

An RA (ring alternative) loop is a loop whose loop ring $R L$ over some ring R with no 2 -torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if and only if it has the following properties:
(i) If three elements associate in some order then they associate in all orders and
(ii) If $g, h, k \in L$ do not associate, then $g h . k=g . k h=h . g k$.

In 1983, E.G. Goodaire defined RA loops:

Definition

An RA (ring alternative) loop is a loop whose loop ring $R L$ over some ring R with no 2 -torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if and only if it has the following properties:
(i) If three elements associate in some order then they associate in all orders and
(ii) If $g, h, k \in L$ do not associate, then $g h . k=g . k h=h . g k$.

It follows that if $R L$ is alternative over one ring R as in the definition, then it is also alternative over all such rings.

Definition

A group G, with center $\mathcal{Z}(G)$, is called an LC group (or, that it has limited commutativity) if it is not commutative and for any pair of elements $x, y \in G$ we have that $x y=y x$ if and only if either $x \in \mathcal{Z}(G)$ or $y \in \mathcal{Z}(G)$ or $x y \in \mathcal{Z}(G)$.

Theorem

A loop L is RA if and only if it is not commutative and, for any two elements a and b of L which do not commute, the subloop of L generated by its centre together with a and b is a group G such that
(i) for any $u \notin G, L=G \cup G u$ is the disjoint union of G and the coset $G u$;
(ii) G is an LC group.
(iii) G has a unique nonidentity commutator s, which is necessarily central and of order 2;
(iv) the map

$$
g \mapsto g^{*}=\left\{\begin{array}{cl}
g & \text { if } g \text { is central } \\
s g & \text { otherwise }
\end{array}\right.
$$

is an involution of G (i.e., an antiautomorphism of order 2);
(v) multiplication in L is defined by

$$
\begin{aligned}
g(h u) & =(h g) u \\
(g u) h & =g h^{*} u \\
(g u)(h u) & =g_{0} h^{*} g
\end{aligned}
$$

where $g, h \in G$ and $g_{0}=u^{2}$ is a central element of G.

Definition
A group G is called an SLC groups if it is LC and contains a unique non-trivial commutators.

Definition

A group G is called an SLC groups if it is LC and contains a unique non-trivial commutator s.

Proposition

A group G, with center $\mathcal{Z}(G)$, is an SLC group if and only if $G / \mathcal{Z}(G) \cong C_{2} \times C_{2}$.

Theorem (Leal - PM, 1993)

A group G is SLC if and only if G can be written in the form $G=D \times A$, where A is abelian and D is an indecomposable 2-group generated by its centre and two elements x and y which satisfy
(i) $\mathcal{Z}(D)=C_{2^{m_{1}}} \times C_{2^{m_{2}}} \times C_{2^{m_{3}}}$, where $C_{2^{m_{i}}}$ is cyclic of order $2^{m_{i}}$ for $i=1,2,3, m_{1} \geq 1$ and $m_{2}, m_{3} \geq 0$;
(ii) $(x, y) \in C_{2^{m_{1}}}$;
(iii) $x^{2} \in C_{2^{m_{1}}} \times C_{2^{m_{2}}}$ and $y^{2} \in C_{2^{m_{1}}} \times C_{2^{m_{2}}} \times C_{2^{m_{3}}}$.

Theorem (Jespers, Leal and PM, 1995)

Let G be a finite group. Then $G / \mathcal{C} Z(G) \cong C_{2} \times C_{2}$ if and only if G can be written in the form $G=D \times A$, where A is abelian and $D=\langle\mathcal{Z}(D), x, y\rangle$ is of one of the following five types of indecomposable 2-groups:

Type	$\mathcal{Z}(D)$	D
D_{1}	$\left\langle t_{1}\right\rangle$	$\left\langle x, y, t_{1} \mid(x, y)=t_{1}^{2^{m_{1}}-1}, x^{2}=y^{2}=t_{1}^{2^{m} 1}\right\rangle$
D_{2}	$\left\langle t_{1}\right\rangle$	$\left\langle x, y, t_{1} \mid(x, y)=t_{1}^{2^{m_{1}}-1}, x^{2}=y^{2}=t_{1}, t^{2^{m_{1}}}=1\right\rangle$
D_{3}	$\left\langle t_{1}\right\rangle \times\left\langle t_{2}\right\rangle$	$\left\langle x, y, t_{1}, t_{2} \mid(x, y)=t_{1}^{2^{m_{1}}-1}, x^{2}=t_{1}^{2_{1} m_{1}}=t_{2}^{m^{m}}=1, y^{2}=t_{2}\right\rangle$
D_{4}	$\left\langle t_{1}\right\rangle \times\left\langle t_{2}\right\rangle$	$\left\langle x, y, t_{1}, t_{2} \mid(x, y)=t_{1}^{2^{m_{1}}-1}, x^{2}=t_{1}, y^{2}=t_{2}, t_{1}^{2^{m_{1}}}=t_{2}^{m^{m}}=1\right\rangle$
D_{5}	$\left\langle t_{1}\right\rangle \times\left\langle t_{2}\right\rangle \times\left\langle t_{3}\right\rangle$	$\begin{aligned} & \left\langle x, y, t_{1}, t_{2}, t_{3}\right. \\ & \left.\quad(x, y)=t_{1}^{2^{m_{1}}-1}, x^{2}=t_{2}, y^{2}=t_{3}, t_{1}^{2_{1}}=t_{2}^{2^{m_{2}}}=t_{3}^{2^{m_{3}}}=1\right\rangle \end{aligned}$

Jordan Nilpotency

Theorem (Goodaire and PM)

Let $R G$ denote the group ring of a group G over a commutative coefficient ring R with 1 . Then $R G$ is Jordan nilpotent of index 3 if and only if
(1) $\operatorname{car}(R)=4$ and G is abelian or,
(2) $\operatorname{car}(R)=2$ and either G is abelian or G has a unique nonidentity commutator.

Theorem (Goodaire and PM)

Suppose the characteristic of R is different from 2 and $\alpha \mapsto \alpha^{*}$ is an involution on the group ring $R G$ that extends linearly an involution on G. Then the Jordan ring $(R G)^{+}$of symmetric elements is Jordan nilpotent of index 3 if and only if $\operatorname{car}(R)=4$ and G is abelian, or an SLC group with $*$ canonical, or a nonabelian group with the following properties:
(a) any $g \in G$ with $g^{*}=g$ is central;
(b) G has an abelian subgroup A of index 2 ;
(c) there exists $c \notin A$ with the property that for any $a \in A$, either $a c=c a$ or the commutator (a, c) is central of order 2 ;
(d) $a^{*}=(a, c) a$ for all $a \in A$.

