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Introduction



Notation

Let A be an associative ring. The Lie bracket of two elements
a, b ∈ A is given by:

[a, b] = ab − ba.

With usual addition and the Lie bracket as a multiplication, A
becomes a Lie Algebra in the sense that it satisfies the Jacobi
Identity:

[[x , y ], z ] + [[z , x ], y ] + [[y , z ], x ] = 0 ∀x , y , z ∈ A.

The ring is said to be Lie nilpotent, of index n, if
[. . . [[x1, x2], x3], . . . , xn] = 0 for all choices of elements
x1, x2, . . . , xn ∈ A.
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Let A be an associative ring. The circle operation of two
elements a, b ∈ A is given by:

a ◦ b = ab + ba.

With usual addition and this operation as a multiplication, A
becomes a Jordan Algebra in the sense that it satisfies the
Jordan Identity:

((x ◦ x) ◦ y) ◦ x = (x ◦ x) ◦ (y ◦ x) ∀x , y , z ∈ A.

The ring is said to be Jordan nilpotent, of index n, if
(. . . ((x1 ◦ x2) ◦ x3) ◦ . . . ◦ xn) = 0 for all choices of elements
x1, x2, . . . , xn ∈ A.



Let A be an associative ring. The circle operation of two
elements a, b ∈ A is given by:

a ◦ b = ab + ba.

With usual addition and this operation as a multiplication, A
becomes a Jordan Algebra in the sense that it satisfies the
Jordan Identity:

((x ◦ x) ◦ y) ◦ x = (x ◦ x) ◦ (y ◦ x) ∀x , y , z ∈ A.

The ring is said to be Jordan nilpotent, of index n, if
(. . . ((x1 ◦ x2) ◦ x3) ◦ . . . ◦ xn) = 0 for all choices of elements
x1, x2, . . . , xn ∈ A.



Theorem (Passi, Passman and Sehgal 1973)

Let K be a field with char(K ) = p ≥ 0 and G a group. The group
algebra KG is Lie nilpotent if and only if G is nilpotent and
p-abelian.

Recall: G is p-abelian if G ′ is a finite p group (when p > 0) or G is
an abelian group (when p=0).
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Definition

The Classical Involution of a group ring is defined extending
linearly the map g 7→ g−1 to RG :

α =
∑
g∈G

αgg 7→ α∗ =
∑
g∈G

αgg
−1.

Definition

Similarly, a Group Involution in a group ring is defined extending
linearly an involution of the given group g 7→ g∗ to RG :

α =
∑
g∈G

αgg 7→ α∗ =
∑
g∈G

αgg
∗.
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Definition

Let ∗ be an involution on a group ring RG . We consider:

RG+ = {α ∈ RG | α∗ = α}
RG− = {α ∈ RG | α∗ = −α}

the sets of symmetric and skew-symmetric elements of RG ,
respectively.

Notice:

RG− is a Lie subalgebra of RG .

RG+ is a Jordan subalgebra of RG .
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Theorem (Jespers and Ruiz, 2006)

Let ϕ be an involution of a non-abelian group G and let R be a
commutative ring os characteristic different from 2. Then, the
following are equivalent:

1 RG+ is commutative.

2 G is an SLC group with cannonical involution.



Theorem (Broche, Jespers, P.M. and Ruiz 2009)

Let R be a commutative ring. Suppose G is a non-abelian group
and ϕ is an involution on G . Then, (RG )− is commutative if and
only if one of the following conditions holds:

1 K = 〈g ∈ G | g 6∈ G+〉 is abelian (and thus G = K ∪ Kx ,
where x ∈ G+, and ϕ(k) = xkx−1 for all k ∈ K ) and
R2
2 = {0}.

2 R2 = {0} and G contains an abelian subgroup of index 2 that
is contained in G+.

3 char(R) = 4, |G ′| = 2, G/G ′ = (G/G ′)+, g2 ∈ G+ for all
g ∈ G , and G+ is commutative in case R2

2 6= {0}.
4 char(R) = 3, |G ′| = 3, G/G ′ = (G/G ′)+ and g3 ∈ G+ for all

g ∈ G .



Theorem (Giambruno, PM and Sehgal 2013)

Let F be a field, char(F ) 6= 2, and let G be a group with no
2-elements. Let ∗ be an involution on FG induced by an involution
of G and suppose that no dihedral group is involved in G . Then
the Lie algebra FG− is nilpotent if and only if either FG is Lie
nilpotent or char(F ) = p > 2 and the following conditions hold.

1 The set P of p-elements in G is a subgroup,

2 ∗ is trivial on G/P ,

3 there exist normal ∗-invariant subgroups A and B, B ⊂ A such
that B is a finite central p-subgroup of G , A/B is central in
G/B and both G/A and {a ∈ A | aa∗ ∈ B} are finite. 2.



SLC groups



Roughly speaking, a loop is a group which is not necessarily
associative; more precisely, we have the following.

Definition

A loop is a set L together with a (closed) binary operation
(a, b) 7→ ab for which there is a two-sided identity element 1 and
such that the right and left translation maps

Rx : a 7→ ax and Lx : a 7→ xa

are bijections for all x ∈ L. This requirement implies that, for any
a, b ∈ L, the equations ax = b and ya = b have unique solutions.
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The loop algebra of L over an associative and commutative ring
with unity R was introduced in 1944 by R.H. Bruck as a means to
obtain a family of examples of nonassociative algebras.
It is defined in a way similar to that of a group algebra; i.e., as the
free R-module with basis L, with a multiplication induced
distributively from the operation in L.

Definition

A ring R is alternative if

x(xy) = (xx)y and (xy)y = x(yy) for all x , y ∈ R.
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In 1983, E.G. Goodaire defined RA loops:

Definition

An RA (ring alternative) loop is a loop whose loop ring RL over
some ring R with no 2-torsion is alternative, but not associative.

Theorem

Let L be a loop. Then L is a loop with an alternative loop ring if
and only if it has the following properties:

(i) If three elements associate in some order then they associate
in all orders and

(ii) If g , h, k ∈ L do not associate, then gh.k = g .kh = h.gk.

It follows that if RL is alternative over one ring R as in the
definition, then it is also alternative over all such rings.
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Definition

A group G , with center Z(G ), is called an LC group (or, that it
has limited commutativity) if it is not commutative and for any
pair of elements x , y ∈ G we have that xy = yx if and only if
either x ∈ Z(G ) or y ∈ Z(G ) or xy ∈ Z(G ).



Theorem

A loop L is RA if and only if it is not commutative and, for any
two elements a and b of L which do not commute, the subloop of
L generated by its centre together with a and b is a group G such
that

(i) for any u /∈ G , L = G ∪ Gu is the disjoint union of G and the
coset Gu;

(ii) G is an LC group.

(iii) G has a unique nonidentity commutator s, which is necessarily
central and of order 2;



(iv) the map

g 7→ g∗ =

{
g if g is central
sg otherwise

is an involution of G (i.e., an antiautomorphism of order 2);

(v) multiplication in L is defined by

g(hu) = (hg)u

(gu)h = gh∗u

(gu)(hu) = g0h
∗g

where g , h ∈ G and g0 = u2 is a central element of G .



Definition

A group G is called an SLC groups if it is LC and contains a
unique non-trivial commutator s.

Proposition

A group G , with center Z(G ), is an SLC group if and only if
G/Z(G ) ∼= C2 × C2.
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Theorem (Leal - PM, 1993)

A group G is SLC if and only if G can be written in the form
G = D × A, where A is abelian and D is an indecomposable
2-group generated by its centre and two elements x and y which
satisfy

(i) Z(D) = C2m1 × C2m2 × C2m3 , where C2mi is cyclic of order 2mi

for i = 1, 2, 3, m1 ≥ 1 and m2,m3 ≥ 0;

(ii) (x , y) ∈ C2m1 ;

(iii) x2 ∈ C2m1 × C2m2 and y2 ∈ C2m1 × C2m2 × C2m3 .



Theorem (Jespers, Leal and PM, 1995)

Let G be a finite group. Then G/CZ (G ) ∼= C2 × C2 if and only if
G can be written in the form G = D × A, where A is abelian and
D = 〈Z(D), x , y〉 is of one of the following five types of
indecomposable 2-groups:

Type Z(D) D

D1 〈t1〉 〈x, y, t1 | (x, y) = t2
m1−1

1 , x2 = y2 = t2
m1

1 〉

D2 〈t1〉 〈x, y, t1 | (x, y) = t2
m1−1

1 , x2 = y2 = t1, t
2m1

= 1〉

D3 〈t1〉 × 〈t2〉 〈x, y, t1, t2 | (x, y) = t2
m1−1

1 , x2 = t2
m1

1 = t2
m2

2 = 1, y2 = t2〉

D4 〈t1〉 × 〈t2〉 〈x, y, t1, t2 | (x, y) = t2
m1−1

1 , x2 = t1, y
2 = t2, t

2m1
1 = t2

m2
2 = 1〉

D5 〈t1〉 × 〈t2〉 × 〈t3〉 〈x, y, t1, t2, t3 |
(x, y) = t2

m1−1
1 , x2 = t2, y

2 = t3, t
2m1
1 = t2

m2
2 = t2

m3
3 = 1〉



Jordan Nilpotency



Theorem (Goodaire and PM)

Let RG denote the group ring of a group G over a commutative
coefficient ring R with 1. Then RG is Jordan nilpotent of index 3
if and only if

1 car(R) = 4 and G is abelian or,

2 car(R) = 2 and either G is abelian or G has a unique
nonidentity commutator.



Theorem (Goodaire and PM)

Suppose the characteristic of R is different from 2 and α 7→ α∗ is
an involution on the group ring RG that extends linearly an
involution on G . Then the Jordan ring (RG )+ of symmetric
elements is Jordan nilpotent of index 3 if and only if car(R) = 4
and G is abelian, or an SLC group with ∗ canonical, or a
nonabelian group with the following properties:

(a) any g ∈ G with g∗ = g is central;

(b) G has an abelian subgroup A of index 2;

(c) there exists c /∈ A with the property that for any a ∈ A, either
ac = ca or the commutator (a, c) is central of order 2;

(d) a∗ = (a, c)a for all a ∈ A.


